2002 AIME II Problems/Problem 2

Revision as of 07:48, 17 April 2008 by 1=2 (talk | contribs) (See also)

Problem

Three vertices of a cube are $P=(7,12,10)$, $Q=(8,8,1)$, and $R=(11,3,9)$. What is the surface area of the cube?

Solution

$PQ=\sqrt{(8-7)^2+(8-12)^2+(1-10)^2}=\sqrt{98}$

$PR=\sqrt{(11-7)^2+(3-12)^2+(9-10)^2}=\sqrt{98}$

$QR=\sqrt{(11-8)^2+(3-8)^2+(9-1)^2}=\sqrt{98}$

So, PQR is an equilateral triangle. Let the side of the cube is $a$. $a\sqrt{2}=\sqrt{98}$

So, $a=7$, and hence the surface area=$6a^2=294$.

See also

2002 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions