2010 AIME I Problems/Problem 12

Revision as of 21:06, 19 December 2024 by Mineric (talk | contribs) (Solution)

Problem

Let $m \ge 3$ be an integer and let $S = \{3,4,5,\ldots,m\}$. Find the smallest value of $m$ such that for every partition of $S$ into two subsets, at least one of the subsets contains integers $a$, $b$, and $c$ (not necessarily distinct) such that $ab = c$.

Note: a partition of $S$ is a pair of sets $A$, $B$ such that $A \cap B = \emptyset$, $A \cup B = S$.

Solution 1

We claim that $243$ is the minimal value of $m$. Let the two partitioned sets be $A$ and $B$; we will try to partition $3, 9, 27, 81,$ and $243$ such that the $ab=c$ condition is not satisfied. Without loss of generality, we place $3$ in $A$. Then $9$ must be placed in $B$, so $81$ must be placed in $A$, and $27$ must be placed in $B$. Then $243$ cannot be placed in any set, so we know $m$ is less than or equal to $243$.

For $m \le 242$, we can partition $S$ into $S \cap \{3, 4, 5, 6, 7, 8, 81, 82, 83, 84 ... 242\}$ and $S \cap \{9, 10, 11 ... 80\}$, and in neither set are there values where $ab=c$ (since $8 < (3\text{ to }8)^2 < 81$ and $81^2>242$ and $(9\text{ to }80)^2 > 80$). Thus $m = \boxed{243}$.

Solution 2

Consider ${3,4,12}$. We could have any two of the three be together in the same set, and the third in the other set. Thus, we have ${3,4}, {3,12}, {4,12}$. We will try to 'place' numbers in either set such that we never have $a\cdot b = c$, until we reach a point where we MUST have $a\cdot b =c$.

We begin with ${3,12}$. Notice that $a,b,c$ do not have to be distinct, meaning we could have $3\cdot 3=9$. Thus $9$ must be with $4$. Notice that no matter in which set $36$ is placed, we will be forced to have $a\cdot b =c$, since $3*12=36$ and $4*9=36$.

We could have ${4,12}$. Similarly, $16$ must be with $3$, and no matter to which set $48$ is placed into, we will be forced to have $a \cdot b =c$.

Now we have ${3,4}$. $9$ must be with $12$. Then $81$ must be with ${3,4}$. Since $27$ can't be placed in the same set as ${3,4,81}$, $27$ must go with ${9,12}$. But then no matter where $243$ is placed we will have $a\cdot b =c$.

Thus, $\boxed{243}$ is the minimum $m$.

Video Solution

2010 AIME I #12

MathProblemSolvingSkills.com


See Also

2010 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png