2024 AMC 10B Problems/Problem 10
Contents
Problem
Quadrilateral is a parallelogram, and is the midpoint of the side . Let be the intersection of lines and . What is the ratio of the area of quadrilateral to the area of ?
Solution 1
Let have length and let the altitude of the parallelogram perpendicular to have length .
The area of the parallelogram is and the area of equals . Thus, the area of quadrilateral is .
We have from that . Also, , so the length of the altitude of from is twice that of . This means that the altitude of is , so the area of is .
Then, the area of quadrilateral equals the area of minus that of , which is . Finally, the ratio of the area of to the area of triangle is , so the answer is .
Solution 2
Let . Since with a scale factor of , . The scale factor of also means that , therefore since and have the same height, . Since is a parallelogram, ~Tacos_are_yummy_1
Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)
https://youtu.be/QLziG_2e7CY?feature=shared
~ Pi Academy
Video Solution 2 by SpreadTheMathLove
https://www.youtube.com/watch?v=24EZaeAThuE
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.