2024 AMC 12B Problems/Problem 6

Revision as of 10:34, 14 November 2024 by Tsun26 (talk | contribs)

Problem 6

The national debt of the United States is on track to reach $5\times10^{13}$ dollars by $2023$. How many digits does this number of dollars have when written as a numeral in base 5? (The approximation of $\log_{10} 5$ as $0.7$ is sufficient for this problem)

$\textbf{(A) } 18 \qquad\textbf{(B) } 20 \qquad\textbf{(C) } 22 \qquad\textbf{(D) } 24 \qquad\textbf{(E) } 26$

Solution 1

The number of digits is just $\lceil \log_{5} 5\times 10^{13} \rceil$. Note that \[\log_{5} 5\times 10^{13}=1+\frac{13}{\log_{10} 5}\] \[\approx 1+\frac{13}{0.7}\] \[\approx 19.5\]

Hence, our answer is $\fbox{\textbf{(B) } 20}$

~tsun26

Solution 2

We see that $5\times 10^{13} = 2^{13} \cdot 5^{14}$ and $2^{13} = 8192$. Converting this to base $5$ gives us $230232$ (trust me it doesn't take that long). So the final number in base $5$ is $230232$ with $14$ zeroes at the end, which gives us $6 + 14 = 20$ digits. So the answer is $\fbox{\textbf{(B)} 20}$.

~sidkris

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png