2002 AMC 10A Problems/Problem 22

Revision as of 14:13, 11 February 2008 by Azjps (talk | contribs) (solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Solution

The pattern is quite simple to see after listing a couple of terms.

\[\begin{tabular}{|r|r|r|} \hline \#&\text{Removed}&\text{Left}\\ \hline 1&10&90\\ 2&9&81\\ 3&9&72\\ 4&8&64\\ 5&8&56\\ 6&7&49\\ 7&7&42\\ 8&6&36\\ 9&6&30\\ 10&5&25\\ 11&5&20\\ 12&4&16\\ 13&4&12\\ 14&3&9\\ 15&3&6\\ 16&2&4\\ 17&2&2\\ \boxed{18}&1&1\\ \hline \end{tabular}\]

Given $n^2$ tiles, a step removes $n$ tiles, leaving $n^2 - n$ tiles behind. Now, $(n-1)^2 = n^2 - n + (1-n) < n^2 - n < n^2$, so in the next step $n-1$ tiles are removed. This gives $(n^2 - n) - (n-1) = n^2 - 2n + 1 = (n-1)^2$, another perfect square.

Thus each two steps we cycle down a perfect square, and in $(10-1)\times 2 = 18$ steps, we are left with $1$ tile.

See also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions