1998 AHSME Problems/Problem 26
Problem
In quadrilateral , it is given that , angles and are right angles, , and . Then
Solution
Solution 1
Let the extensions of and be at . Since , and is a 30-60-90 triangle. Also, , so is also a 30-60-90 triangle.
size(200); defaultpen(0.8); pair D=(0,0), C=(0,24*3^0.5), A=(46,0), E=(72,0), B=(46+13/2,13*3^.5/2); pair P=(C+D)/2, Q=(D+A)/2, R=(A+E)/2, T=(A+B)/2; draw(D--A--B--C--cycle); draw(C--A); draw(A--E--B,dashed); label("\(A\)",A,SSW); label("\(B\)",B,NNE); label("\(C\)",C,WNW); label("\(D\)",D,SSW); label("\(E\)",E,SSE); label("24<math>\sqrt{3}</math>",P,W); label("46",Q,S); label("26",R,S); label("13",T,WNW); (Error making remote request. Unknown error_msg)
Thus , and . By the Pythagorean Theorem on ,
Solution 2
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Opposite angles add up to , so is a cyclic quadrilateral. Also, , from which it follows that is a diameter of the circumscribing circle. We can apply the extended version of the Law of Sines on :
By the Law of Cosines on :
So .
See also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 25 |
Followed by Problem 27 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |