Sophie Germain Identity
The Sophie Germain Identity, credited to Marie-Sophie Germain, states that:
![$a^4 + 4b^4 = (a^2 + 2b^2 + 2ab)(a^2 + 2b^2 - 2ab)$](http://latex.artofproblemsolving.com/8/4/0/840d1d559b21e630ec1c813b4a7c2f37fd001e57.png)
The proof involves completing the square and then difference of squares.
![$\displaystyle a^4 + 4b^4 = a^4 + 4a^2b^2 + 4b^4 - 4a^4b^4$](http://latex.artofproblemsolving.com/d/9/0/d905ef4117217275ffec4564a73f7b7914ee80d9.png)
![$= (a^2 + 2b^2)^2 - 4a^4b^4$](http://latex.artofproblemsolving.com/f/f/b/ffb333c797e9bd7e8087405fc92423dfba16faf0.png)
![$\displaystyle = (a^2 + 2b^2 - 2ab) (a^2 + 2b^2 + 2ab)$](http://latex.artofproblemsolving.com/f/2/f/f2fc13f04756154d971aeb6f35d42bd34bfbeec9.png)
Problems
Introductory
Intermediate
- Compute
. (1987 AIME, #14)
The Sophie Germain Identity, credited to Marie-Sophie Germain, states that:
The proof involves completing the square and then difference of squares.
Something appears to not have loaded correctly.