2024 IMO Problems/Problem 6
Revision as of 12:26, 30 July 2024 by Codemaster11 (talk | contribs)
Let be the set of rational numbers. A function is called if the following property holds: for every , Show that there exists an integer such that for any aquaesulian function there are at most different rational numbers of the form for some rational number , and find the smallest possible value of .
Video Solution
See Also
2024 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Problem |
All IMO Problems and Solutions |