1981 AHSME Problems/Problem 22
Problem
How many lines in a three dimensional rectangular coordinate system pass through four distinct points of the form , where , , and are positive integers not exceeding four?
Solution 1(casework)
Restating the problem, we seek all the lines that will pass through (, , ), (, , ), (, , ), and (, , ), such that are positive integers, are integers, and all of our points are between 1 and 4, inclusive. With this constraint in mind, we realize that for each coordinate, we have three choices:
- Set to . This then allows us to set the corresponding to any number from to , inclusive.
- Set to . This forces us to set the corresponding to .
- Set to . This forces us to set the corresponding to .
Note that options 2 and 3 will give us the same coordinates if we mirror the assignments of each coordinate. Also note that we cannot set all three coordinates to not change, as that would be a point.
All of this gives us ways to assign each coordinate, for a total of . We then must subtract the ways to get a point ( ways per coordinate, for a total of ). This leaves us with . Finally, we divide by to account for mirror assignments giving us the same coordinate, for a final answer of .
(This was my first solution, apologies if it is bad).