2003 AMC 10A Problems/Problem 20

Revision as of 19:25, 4 November 2006 by Xantos C. Guin (talk | contribs) (added problem and solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem20

A base-10 three digit number $n$ is selected at random. Which of the following is closest to the probability that the base-9 representation and the base-11 representation of $n$ are both thee-digit numerals?

$\mathrm{(A) \ } 0.3\qquad \mathrm{(B) \ } 0.4\qquad \mathrm{(C) \ } 0.5\qquad \mathrm{(D) \ } 0.6\qquad \mathrm{(E) \ } 0.7$

Solution

To be a three digit number in base-10:

$10^{2} \leq n \leq 10^{3}-1$

$100 \leq n \leq 999$

Thus there are $900$ three-digit numbers in base-10

To be a three-digit number in base-9:

$9^{2} \leq n \leq 9^{3}-1$

$81 \leq n \leq 728$

To be a three-digit number in base-11:

$11^{2} \leq n \leq 11^{3}-1$

$121 \leq n \leq 1330$

So, $121 \leq n \leq 728$

Thus, there are $608$ base-10 three-digit numbers that are three digit numbers in base-9 and base-11.

Therefore the desired probability is $\frac{608}{900}\approx 0.7 \Rightarrow E$.

See Also