2024 IMO Problems/Problem 6
Revision as of 18:36, 19 July 2024 by Stewpidity (talk | contribs) (Created page with "Let <math>\mathbb{Q}</math> be the set of rational numbers. A function <math>f: \mathbb{Q} \to \mathbb{Q}</math> is called <math>\emph{aquaesulian}</math> if the following pro...")
Let be the set of rational numbers. A function is called if the following property holds: for every , Show that there exists an integer such that for any aquaesulian function there are at most different rational numbers of the form for some rational number , and find the smallest possible value of .