1959 AHSME Problems/Problem 40

Revision as of 14:44, 28 December 2017 by Wintermath (talk | contribs) (Created page with "On the same side of a straight line three circles are drawn as follows: a circle with a radius of <math>4</math> inches is tangent to the line, the other two circles are equal...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

On the same side of a straight line three circles are drawn as follows: a circle with a radius of $4$ inches is tangent to the line, the other two circles are equal, and each is tangent to the line and to the other two circles. The radius of the equal circles is: $\textbf{(A)}\ 24 \qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 16\qquad\textbf{(E)}\ 12$

Solution:

Make a line DG which is parallel to FC. We know that GF = BF = 5, since BFE is similar to BGD.

Since ADG is similar to ACB, we know that AG is 10.

Thus, AF = 10 + 5 = 15, which is answer C