2002 AMC 10P Problems/Problem 14

Revision as of 07:39, 15 July 2024 by Wes (talk | contribs) (Solution 1)

Problem 14

The vertex $E$ of a square $EFGH$ is at the center of square $ABCD.$ The length of a side of $ABCD$ is $1$ and the length of a side of $EFGH$ is $2.$ Side $EF$ intersects $CD$ at $I$ and $EH$ intersects $AD$ at $J.$ If angle $EID=60^{\circ},$ the area of quadrilateral $EIDJ$ is

$\text{(A) }\frac{1}{4} \qquad \text{(B) }\frac{\sqrt{3}}{6} \qquad \text{(C) }\frac{1}{3} \qquad \text{(D) }\frac{\sqrt{2}}{4} \qquad \text{(E) }\frac{\sqrt{3}}{2}$

Solution 1

Draw a diagram. Split quadrilateral $EJDC$ into $\triangle ECJ$ and $\triangle JDC.$ Let the perpendicular from point $E$ intersect $AD$ at $X$, and let the perpendicular from point $E$ intersect $CD$ at $Y.$ We know $\angle EJD=120^{\circ}$ because $\angle JDC=90^{\circ}$ since $ABCD$ is a square, $\angle DCE=60^{\circ}$ as given, and $\angle CEJ = 90^{\circ},$ so \angle EJD = 360^{\circ}-120^{\circ}-90^\{circ}-90^\{circ}-60^\{circ}=120\{circ}.$Since$E$is at the center of square$ABCD$,$EX=EY=\frac{1}{2}.$By the$30^{\circ}-60^{\circ}-90^{\circ}$,$ED=\frac{EX}{sqrt{3}}=EC=\frac{EY}{sqrt{3}}=\frac{1}{3}. Additionally, we know $JD=AD-AX-XJ,$ so $JD=1-\frac{1}{2}-\frac{1}{2sqrt{3}}$ and

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png