2014 AMC 8 Problems/Problem 17

Revision as of 10:20, 2 July 2023 by Thestudyofeverything (talk | contribs) (Video Solution by OmegaLearn)

Problem

George walks $1$ mile to school. He leaves home at the same time each day, walks at a steady speed of $3$ miles per hour, and arrives just as school begins. Today he was distracted by the pleasant weather and walked the first $\frac{1}{2}$ mile at a speed of only $2$ miles per hour. At how many miles per hour must George run the last $\frac{1}{2}$ mile in order to arrive just as school begins today?

$\textbf{(A) }4\qquad\textbf{(B) }6\qquad\textbf{(C) }8\qquad\textbf{(D) }10\qquad \textbf{(E) }12$

Solution 1

Note that on a normal day, it takes him $1/3$ hour to get to school. However, today it took $\frac{1/2 \text{ mile}}{2 \text{ mph}}=1/4$ hour to walk the first $1/2$ mile. That means that he has $1/3 -1/4 = 1/12$ hours left to get to school, and $1/2$ mile left to go. Therefore, his speed must be $\frac{1/2 \text{ mile}}{1/12 \text { hour}}=\boxed{6 \text{ mph}}$, so $\boxed{\text{(B) }6}$ is the answer.

Solution 2

Using the harmonic mean formula, and making the speed he needs to take to get to school for the last half $x$, we can make the expression:

$\frac{2 * 2x}{2 + x}$

Which simplifies to:

$\frac{4x}{2 + x}$

Then, because we know that since he goes at $3$ mph on a normal day, we can say that it is the harmonic mean of the two rates he goes at today, so we add that to our expression and turn it into something familiar:

$\frac{4x}{2 + x} = 3$

Solving that equation gives us:

$\boxed{\text {(B) } 6}$

Video Solution (CREATIVE THINKING)

https://youtu.be/Il6IcNHKkWk

~Education, the Study of Everything


Video Solution

https://youtu.be/rQUwNC0gqdg?t=3191

~ pi_is_3.14

Video Solution

https://youtu.be/1jW0bwR_DPQ ~savannahsolver

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png