1999 IMO Problems/Problem 2
Problem
(Marcin Kuczma, Poland) Let be a fixed integer.
- (a) Find the least constant such that for all nonnegative real numbers ,
- (b) Determine when equality occurs for this value of .
Solution
The answer is , and equality holds exactly when two of the are equal to each other and all the other are zero. We prove this by induction on the number of nonzero .
First, suppose that at most two of the , say and , are nonzero. Then the left-hand side of the desired inequality becomes and the right-hand side becomes . By AM-GM, with equality exactly when , as desired.
Now, suppose that our statement holds when at most of the are equal to zero. Suppose now that of the are equal to zero, for . Without loss of generality, let these be . We define and for convenience, we will denote . We wish to show that by replacing the with the , we increase the left-hand side of the desired inequality without changing the right-hand side; and then to use the inductive hypothesis.
We note that If we replace with , then becomes but none of the other terms change. Since , it follows that we have strictly increased the right-hand side of the equation, i.e., By inductive hypothesis,
\[\sum_{1\le i<j \le n} y_i y_j (y_i^2 +y_j^2) \le \left( \sum_{i=1}^n y_i right)^4 / 8 ,\] (Error compiling LaTeX. Unknown error_msg)
and by our choice of , Hence the problem's inequality holds by induction, and is strict when there are more than two nonzero , as desired.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.