2002 AMC 12P Problems/Problem 1

Revision as of 00:42, 30 December 2023 by Wes (talk | contribs) (Solution 1)

Problem

Which of the following numbers is a perfect square?

$\text{(A) }4^4 5^5 6^6 \qquad \text{(B) }4^4 5^6 6^5 \qquad \text{(C) }4^5 5^4 6^6 \qquad \text{(D) }4^6 5^4 6^5 \qquad \text{(E) }4^6 5^5 6^4$

Solution 1

For a positive integer to be a perfect square, all the primes in its prime factorization must have an even exponent. With a quick glance at the answer choices, we can eliminate options $\textbf{(A)}$ because $5^5$ is an odd power $\textbf{(B)}$ because $6^5 = 2^5 \cdot 3^5$ and $3^5$ is an odd power $\textbf{(D)}$ because $6^5 = 2^5 \cdot 3^5$ and $3^5$ is an odd power, and $\textbf{(E)}$ because $5^5$ is an odd power. This leaves option $\textbf{(C)},$ in which $4^5=2^2^5=2^10$ (Error compiling LaTeX. Unknown error_msg), and since 10, 4, and 6 are all even, it is a perfect square. Thus, our answer is $\box{\textbf{(C)} 4^4 5^4 6^6},$ (Error compiling LaTeX. Unknown error_msg)

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png