2023 AMC 10B Problems/Problem 15
Problem
What is the least positive integer such that is a perfect square?
Solution
Consider 2, there are odd number of 2's in (We're not counting 3 2's in 8, 2 3's in 9, etc). There are even number of 3's in ...
So, original expression reduce to
\begin{align*} m \cdot 2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16 &\equiv m \cdot 2^8 \cdot (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8)\\ &\equiv m \cdot 2 \cdot 3 \cdot 5 \cdot (2 \cdot 3) \cdot 7 \cdot (2 \cdot 2 \cdot 2)\\ &\equiv m \cdot 2 \cdot 5 \cdot 7 \end{align*} m &= 2 \cdot 5 \cdot 7 = 70 (Error compiling LaTeX. Unknown error_msg)