2023 AMC 12A Problems/Problem 4
Problem
A quadrilateral has all integer sides lengths, a perimeter of , and one side of length . What is the greatest possible length of one side of this quadrilateral?
Solution 1
Let's use the triangle inequality. We know that for a triangle, the 2 shorter sides must always be longer than the longest side. Similarly for a convex quadrilateral, the shortest 3 sides must always be longer than the longest side. Thus, the answer is
~zhenghua
Solution 2
Say the chosen side is and the other sides are .
By the Generalised Polygon Inequality, . We also have .
Combining these two, we get .
The smallest length that satisfies this is
~not_slay
Solution 3 (Fast)
By Brahmagupta's Formula, the area of the rectangle is defined by where is the semi-perimeter. If the perimeter of the rectangle is , then the semi-perimeter will be . The area of the rectangle must be positive so the difference between the semi-perimeter and a side length must be greater than as otherwise, the area will be or negative. Therefore, the longest a side can possibly be in this rectangle is
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.