2023 AMC 12A Problems/Problem 14

Revision as of 19:23, 9 November 2023 by Plasta (talk | contribs)

Problem

How many complex numbers satisfy the equation $z^5=\overline{z}$, where $\overline{z}$ is the conjugate of the complex number $z$?

$\textbf{(A)} ~2\qquad\textbf{(B)} ~3\qquad\textbf{(C)} ~5\qquad\textbf{(D)} ~6\qquad\textbf{(E)} ~7$

Solution 1

When $z^5=\overline{z}$, there are two conditions: either $z=0$ or $z\neq 0$. When $z\neq 0$, since $z^5=\overline{z}$, $|z|=1$. $z^5\cdot z=z^6=\overline{z}\cdot z=|z|^2=1$. Consider the $r(\cos \theta +i\sin \theta)$ form, when $z^6=1$, there are 6 different solutions for $z$. Therefore, the number of complex numbers satisfying $z^5=\bar{z}$ is $\boxed{\textbf{(E)} 7}$.