Parallelepiped

Revision as of 20:06, 3 July 2009 by 5849206328x (talk | contribs)

This article is a stub. Help us out by expanding it.

A parallelepiped is a prism that has parallelograms for its faces. Similarly, a parallelepiped is equivalently a hexahedron with six parallelogram faces. Specific parallelepipeds include the cube, the cuboid, and any rectangular prism.

Specific Cases

A parallelepiped with all rectangular faces is a cuboid, and a parallelepiped with six rhombus faces is known as a rhombohedron. In an $n-$dimensional space, a parallelepiped is sometimes referred to as an $n-$dimensional parallelepiped, or as an $n-$parallelepiped. A cube is a parallelepiped with all square faces.

Volume

The volume of a parallelepiped is the product of area of one of its faces times the perpendicular distance to the corresponding top face. Alternately, if the three edges of a parallelepiped that meet at one vertex are defined as vector $a, b,$ and $c$ with the specific vertex as the origin, then the volume of the parallelepiped is the same as the scalar triple product of the vectors, or $a \cdot (b \times c)$.


See also