2023 USAMO Problems/Problem 6
Problem
Let ABC be a triangle with incenter and excenters , , opposite , , and , respectively. Given an arbitrary point on the circumcircle of that does not lie on any of the lines , , or , suppose the circumcircles of and intersect at two distinct points and . If is the intersection of lines and , prove that .
Solution 1
[asy] size(500); pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q; B=(0,0); C=(8,0); A=intersectionpoint(Circle(B,6),Circle(C,9)); I=incenter(A,B,C); path c=circumcircle(A,B,C); J=intersectionpoint(I--(4*I-3*A),c); IA=2*J-I; IB=2*intersectionpoint(I--(4*I-3*B),c)-I; IC=2*intersectionpoint(I--(4*I-3*C),c)-I; K=intersectionpoint(IB--IC,c); D=intersectionpoint(I--(I+(10,-12)),c); path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); F=intersectionpoints(c1,c2)[1]; E=extension(B,C,D,F); G=intersectionpoint(c1,c); H=intersectionpoint(c2,c); P=extension(A,I,B,C); Q=extension(IB,IC,B,C); draw(A--B--C--A); draw(c); draw(A--J); draw(circumcircle(D,I,IA)); draw(circumcircle(D,IB,IC)); draw(D--F); draw(B--Q--IB); draw(G--J,dashed); draw(H--K,dashed); dot("",A,dir(A-circumcenter(A,B,C))); dot("",B,1/2*dir(B-dir(circumcenter(A,B,C))*dir(90)+dir(B-C))); dot("",C,dir(C-circumcenter(A,B,C))*dir(15)); dot("",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); dot("",E,dir(dir(H-K)+dir(B-C))); dot("",F,dir(dir(90)*dir(F-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(D,IB,IC)-F))); dot("",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); dot("",H,dir(dir(90)*dir(circumcenter(D,IB,IC)-H)+dir(90)*dir(H-circumcenter(A,B,C)))); dot("",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); dot("",J,dir(J-circumcenter(A,B,C))); dot("",K,dir(K-circumcenter(A,B,C))); dot("",IA,dir(IA-circumcenter(D,I,IA))); dot("",IB,dir(dir(IB-IC)+dir(IB-IA))); dot("",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); dot("",P,dir(dir(A-I)+dir(C-B))); dot("",Q,dir(dir(IC-IB)+dir(B-C))); [/asy]
Consider points and such that the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with the circumcircle of are and , the intersections of the circumcircle of with line are and , the intersections of the circumcircle of with line are and , the intersection of lines and is , and the intersection of lines and is .
Since is cyclic, the pairwise radical axes of the circumcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. Similarly, since is cyclic, the pairwise radical axes of the cirucmcircles of and concur. The pairwise radical axes of these circles are and , so and are collinear. This means that , so the tangents to the circumcircle of at and intersect on . Let this intersection be . Also, let the intersection of the tangents to the circumcircle of at and be a point at infinity on called and let the intersection of lines and be . Then, let the intersection of lines and be . By Pascal's Theorem on and , we get that and are collinear and that and are collinear, so and are collinear, meaning that lies on since both and lie on .
[asy] size(500); pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,GP; B=(0,0); C=(8,0); A=intersectionpoint(Circle(B,6),Circle(C,9)); I=incenter(A,B,C); path c=circumcircle(A,B,C); J=intersectionpoint(I--(4*I-3*A),c); IA=2*J-I; IB=2*intersectionpoint(I--(4*I-3*B),c)-I; IC=2*intersectionpoint(I--(4*I-3*C),c)-I; K=intersectionpoint(IB--IC,c); D=intersectionpoint(I--(I+(10,-12)),c); path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); F=intersectionpoints(c1,c2)[1]; E=extension(B,C,D,F); G=intersectionpoint(c1,c); H=intersectionpoint(c2,c); P=extension(A,I,B,C); Q=extension(IB,IC,B,C); GP=extension(A,2*foot(G,A,I)-G,B,C); draw(A--B--C--A); draw(c); draw(A--J--G--D); draw(C--GP); draw(circumcircle(A,E,J),dashed); dot("",A,dir(A-circumcenter(A,B,C))); dot("",B,dir(B-circumcenter(A,B,C))); dot("",C,dir(dir(90)*dir(circumcenter(A,B,C)-C)+dir(C-B))); dot("",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); dot("",E,dir(dir(J-G)+dir(B-C))); dot("",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); dot("",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); dot("",J,dir(J-circumcenter(A,B,C))); dot("",P,dir(dir(A-I)+dir(C-B))); dot("",GP,dir(GP-B)); [/asy]
Consider the transformation which is the composition of an inversion centered at and a reflection over the angle bisector of that sends to and to . We claim that this sends to and to . It is sufficient to prove that if the transformation sends to , then is cyclic. Notice that since and . Therefore, we get that , so is cyclic, proving the claim. This means that .
[asy] size(500); pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,GP,BP,CP,DP; B=(0,0); C=(8,0); A=intersectionpoint(Circle(B,6),Circle(C,9)); I=incenter(A,B,C); path c=circumcircle(A,B,C); J=intersectionpoint(I--(4*I-3*A),c); IA=2*J-I; IB=2*intersectionpoint(I--(4*I-3*B),c)-I; IC=2*intersectionpoint(I--(4*I-3*C),c)-I; K=intersectionpoint(IB--IC,c); D=intersectionpoint(I--(I+(10,-12)),c); path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); F=intersectionpoints(c1,c2)[1]; E=extension(B,C,D,F); G=intersectionpoint(c1,c); H=intersectionpoint(c2,c); P=extension(A,I,B,C); Q=extension(IB,IC,B,C); BP=2*foot(B,IB,IC)-B; CP=2*foot(C,IB,IC)-C; DP=2*foot(D,IB,IC)-D; draw(A--B--C--A); draw(E--DP); draw(BP--A--CP); draw(IB--IC); draw(c); draw(circumcircle(B,IB,IC)); draw(circumcircle(E,IB,IC)); dot("",A,2*dir(dir(IB-A)+dir(C-A))); dot("",B,dir(B-circumcenter(A,B,C))); dot("",C,dir(dir(90)*dir(circumcenter(A,B,C)-C)+dir(C-B))); dot("",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); dot("",E,dir(B-C)*dir(90)); dot("",IB,dir(dir(IB-IC)+dir(IB-IA))); dot("",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); dot("",BP,dir(BP-circumcenter(B,IB,IC))); dot("",CP,dir(CP-circumcenter(B,IB,IC))); dot("",DP,dir(DP-E)); [/asy]
We claim that . Construct to be the intersection of line and the circumcircle of and let and be the intersections of lines and with the circumcircle of . Since and are the reflections of and over , it is sufficient to prove that are concyclic. Since and concur and and are concyclic, we have that are concyclic, so , so are concyclic, proving the claim. We can similarly get that .
[asy] size(500); pair A,B,C,D,E,F,G,H,I,J,K,IA,IB,IC,P,Q,JP,KP; B=(0,0); C=(8,0); A=intersectionpoint(Circle(B,6),Circle(C,9)); I=incenter(A,B,C); path c=circumcircle(A,B,C); J=intersectionpoint(I--(4*I-3*A),c); IA=2*J-I; IB=2*intersectionpoint(I--(4*I-3*B),c)-I; IC=2*intersectionpoint(I--(4*I-3*C),c)-I; K=intersectionpoint(IB--IC,c); D=intersectionpoint(I--(I+(10,-12)),c); path c1=circumcircle(D,I,IA),c2=circumcircle(D,IB,IC); F=intersectionpoints(c1,c2)[1]; E=extension(B,C,D,F); G=intersectionpoint(c1,c); H=intersectionpoint(c2,c); P=extension(A,I,B,C); Q=extension(IB,IC,B,C); JP=2*J-E; KP=2*K-E; draw(A--B--C--A); draw(c); draw(A--J); draw(circumcircle(D,I,IA)); draw(circumcircle(D,IB,IC)); draw(D--F,dashed); draw(B--Q--IB); draw(G--JP); draw(H--KP); dot("",A,dir(A-circumcenter(A,B,C))); dot("",B,1/2*dir(B-dir(circumcenter(A,B,C))*dir(90)+dir(B-C))); dot("",C,dir(C-circumcenter(A,B,C))*dir(15)); dot("",D,dir(dir(90)*dir(circumcenter(D,I,IA)-D)+dir(90)*dir(D-circumcenter(D,IB,IC)))); dot("",E,dir(dir(H-K)+dir(B-C))); dot("",F,dir(dir(90)*dir(F-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(D,IB,IC)-F))); dot("",G,dir(dir(90)*dir(G-circumcenter(D,I,IA))+dir(90)*dir(circumcenter(A,B,C)-G))); dot("",H,dir(dir(90)*dir(circumcenter(D,IB,IC)-H)+dir(90)*dir(H-circumcenter(A,B,C)))); dot("",I,dir(dir(90)*dir(circumcenter(D,I,IA)-I)+dir(A-I))); dot("",J,dir(dir(circumcenter(A,B,C)-J)*dir(90)+dir(J-G))); dot("",K,dir(dir(K-circumcenter(A,B,C))*dir(90)+dir(K-H))); dot("",IA,dir(IA-circumcenter(D,I,IA))); dot("",IB,dir(dir(IB-IC)+dir(IB-IA))); dot("",IC,dir(dir(90)*dir(circumcenter(D,IB,IC)-IC)+dir(IC-IB))); dot("",P,dir(dir(A-I)+dir(C-B))); dot("",Q,dir(dir(IC-IB)+dir(B-C))); dot("",JP,dir(JP-circumcenter(D,I,IA))); dot("",KP,dir(KP-circumcenter(D,IB,IC))); [/asy]
Let line intersect the circumcircle of at and . Notice that is the midpoint of and , so is a parallelogram with center , so . Similarly, we get that if line intersects the circumcircle of at and , we have that , so , so , so are concyclic. Then, the pairwise radical axes of the circumcircles of and are and , so and concur, so and concur, so . We are then done since .
~Zhaom
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.