Exradius

Revision as of 09:56, 21 May 2020 by Anonman (talk | contribs) (there were no latex, so I added, needs rechecking)

Excircle The radius of an excircle. Let a triangle have exradius $r_A$ (sometimes denoted $\rho_A$), opposite side of length $a$ and angle $A$, area $\Delta$, and semiperimeter $s$. Then

$r_1	=	\frac{\Delta}{(s-a)}	 (1) 	=	\sqrt{\frac{(s(s-b)(s-c))}{(s-a)}}	 (2) 	=	4R\sin{\frac{1}{2A}}\cos{\frac{1}{2B}}\cos{\frac{1}{2C}}	 (3)$ (Johnson 1929, p. 189), where $R$ is the circumradius. Let $r$ be the inradius, then

$4R=r_1+r_2+r_3-r$ 	

(4)

$\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}=1/r$

(5) (Casey 1888, p. 65) and

$rr_1r_2r_3=\Delta^2$ 	

(6) Some fascinating formulas due to Feuerbach are

$r(r_2r_3+r_3r_1+r_1r_2)=s\Delta=r_1r_2r_3$ 

$r(r_1+r_2+r_3)=bc+ca+ab-s^2$ $rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab$ $r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=\frac{1}{2(a^2+b^2+c^2)}