1991 AHSME Problems/Problem 30

Revision as of 10:10, 6 May 2023 by Isabelchen (talk | contribs) (Solution 2)

Problem

For any set $S$, let $|S|$ denote the number of elements in $S$, and let $n(S)$ be the number of subsets of $S$, including the empty set and the set $S$ itself. If $A$, $B$, and $C$ are sets for which $n(A)+n(B)+n(C)=n(A\cup B\cup C)$ and $|A|=|B|=100$, then what is the minimum possible value of $|A\cap B\cap C|$?

$(A) 96 \ (B) 97 \ (C) 98 \ (D) 99 \ (E) 100$

Solution 1

$n(A)=n(B)=2^{100}$, so $n(C)$ and $n(A \cup B \cup C)$ are integral powers of $2$ $\Longrightarrow$ $n(C)=2^{101}$ and $n(A \cup B \cup C)=2^{102}$. Let $A=\{s_1,s_2,s_3,...,s_{100}\}$, $B=\{s_3,s_4,s_5,...,s_{102}\}$, and $C=\{s_1,s_2,s_3,...,s_{k-2},s_{k-1},s_{k+1},s_{k+2},...,s_{100},s_{101},s_{102}\}$ where $s_k \in A \cap B$ Thus, the minimum value of $|A\cap B \cap C|$ is $\fbox{B=97}$

Solution 2

As $|A|=|B|=100$, $n(A)=n(B)=2^{100}$

As $n(A)+n(B)+n(C)=n(A \cup B \cup C)$, $2^{|A|}+2^{|B|}+2^{|C|}=2^{|A \cup B \cup C|}$, $2^{100}+2^{100}+2^{|C|}=2^{|A \cup B \cup C|}$

$2^{101}+2^{|C|}=2^{|A \cup B \cup C|}$ as $|C|$ and $|A \cup B \cup C|$ are integers, $|C|$=101 and $|A \cup B \cup C| = 102$

By Principle of Inclusion-Exclusion, $|A \cup B| = |A| + |B| - |A \cap B| = 200 - A \cap B|$

$|A| + |B| \le |A \cup B| \le |A \cup B \cup C|$, $100 \le |A \cup B| \le 102$, $98 \le |A \cap B| \le 100$

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png