1975 AHSME Problems/Problem 28
Revision as of 22:27, 12 February 2021 by Coolmath34 (talk | contribs)
Problem 28
In shown in the adjoining figure, is the midpoint of side and . Points and are taken on and , respectively, and lines and intersect at . If then equals
Solution
Here, we use Mass Points. Let . We then have , , and Let have a mass of . Since is the midpoint, also has a mass of . Looking at segment , we have So Looking at segment ,we have So From this, we get and We want the value of . This can be written as Thus
~JustinLee2017
See Also
1975 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by Problem 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.