2017 IMO Problems/Problem 4
Revision as of 09:22, 5 June 2019 by Epicskills (talk | contribs) (Created page with "Let <math>R</math> and <math>S</math> be different points on a circle <math>\Omega</math> such that <math>RS</math> is not a diameter. Let <math>\ell</math> be the tangent lin...")
Let and be different points on a circle such that is not a diameter. Let be the tangent line to at . Point is such that is the midpoint of the line segment . Point is chosen on the shorter arc of so that the circumcircle of triangle intersects at two distinct points. Let be the common point of and that is closer to . Line meets again at . Prove that the line is tangent to .