2021 GMC 10B Problems/Problem 21

Revision as of 23:12, 5 March 2022 by Pineconee (talk | contribs) (Created page with "==Problem== Find the remainder when <math>3^{1624}+7^{1604}</math> is divided by <math>1000</math>. <math>\textbf{(A)} ~122 \qquad\textbf{(B)} ~322 \qquad\textbf{(C)} ~482 \...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Find the remainder when $3^{1624}+7^{1604}$ is divided by $1000$.

$\textbf{(A)} ~122 \qquad\textbf{(B)} ~322 \qquad\textbf{(C)} ~482 \qquad\textbf{(D)} ~882 \qquad\textbf{(E)} ~922$

Solution

Since $\varphi(1000) = 400$, we have \begin{align*} 3^{1624} + 7^{1604} &\equiv 3^{400\cdot4+24} + 7^{400\cdot4+4} &\pmod{1000} \\ &\equiv 3^{24} + 7^{4} &\pmod{1000} \end{align*}

Since $3^{24} = 9^{12} = (1-10)^{12}$, we can apply the binomial theorem to give \[3^{24}\equiv (1-10)^{12}\equiv 1-12\cdot10 + 66\cdot10^2 \equiv481 \pmod{1000}.\]

Since we can bash $7^4 \pmod {1000}$ rather easily, we can finish the problem from here \begin{align*} 3^{1624}+7^{1604} &\equiv 481 + 7^4 &\pmod{1000} \\ &\equiv 481 + 401 &\pmod{1000} \\ &\equiv \boxed{\textbf{(D)}~882} &\pmod{1000}. \end{align*} ~pineconee