Mock AIME 1 2006-2007 Problems/Problem 14

Revision as of 12:57, 4 December 2021 by Happymatheducation (talk | contribs) (Solution)

Problem

Three points $A$, $B$, and $T$ are fixed such that $T$ lies on segment $AB$, closer to point $A$. Let $AT=m$ and $BT=n$ where $m$ and $n$ are positive integers. Construct circle $O$ with a variable radius that is tangent to $AB$ at $T$. Let $P$ be the point such that circle $O$ is the incircle of $\triangle APB$. Construct $M$ as the midpoint of $AB$. Let $f(m,n)$ denote the maximum value $\tan^{2}\angle AMP$ for fixed $m$ and $n$ where $n>m$. If $f(m,49)$ is an integer, find the sum of all possible values of $m$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

Please see below an attempted solution to understand why this problem doesn't have a solution:

Lemma: $\cot{B}-\cot{A}=2\cot{\angle{AMP}}$\\ Proof of lemma: \\ Construct $PH\perp{AB}$ at $H$. \\ Case (i) $A<90^\circ$\\ $\cot{B}-\cot{A}=\dfrac{BH}{PH}-\dfrac{AH}{PH}=\dfrac{BM+MH}{PH}-\dfrac{AM-MH}{PH}=\dfrac{BM+MH-AM+MH}{PH}=\dfrac{2MH}{PH}=\cot{\angle{AMP}}$\\\\ Case (ii) $A>90^\circ$\\ $\cot{B}-\cot{A}=\dfrac{BH}{PH}+\dfrac{AH}{PH}=\dfrac{BM+MH}{PH}+\dfrac{MH-AM}{PH}=\dfrac{BM+MH-AM+MH}{PH}=\dfrac{2MH}{PH}=\cot{\angle{AMP}}$\\\\ Case (iii) $A=90^\circ$\\ $\cot{B}-\cot{A}=\dfrac{BA}{PA}-0=\dfrac{2MA}{PA}=\cot{\angle{AMP}}$, proof done.\\\\

Now we try to find $f(m,n)$. \\ Let O be the centre of the incircle, and $r$ be the inradius.\\ $\tan{\angle{OAB}} = \dfrac{OT}{AT} = \dfrac{r}{m}$\\\\ $\tan{\angle{PAB}} = \tan{(2\angle{OAB})} =  \dfrac{2\tan{\angle{OAB}}}{1-\tan^2{\angle{OAB}}} = \dfrac{2r/m}{1-(r/m)^2} = \dfrac{2mr}{m^2-r^2}$\\\\ Similarly, $\tan{\angle{PBA}} = \dfrac{2nr}{n^2-r^2}$\\\\ Therefore, $\tan^2{\angle{AMP}} = \dfrac{1}{\cot^2{\angle{AMP}}} = \dfrac{1}{\dfrac{(\cot{\angle{PBA}}-\cot{\angle{PAB}})^2}{2^2}} = \dfrac{4}{(\cot{\angle{PBA}}-\cot{\angle{PAB}})^2} = \dfrac{4}{\Big(\dfrac{1}{\tan{\angle{PBA}}}-\dfrac{1}{\tan{\angle{PAB}}}\Big)^2} = \dfrac{4}{\Big(\dfrac{n^2-r^2}{2nr}-\dfrac{m^2-r^2}{2mr}\Big)^2} = \dfrac{16m^2n^2r^2}{[(n^2-r^2)m-(m^2-r^2)n]^2} = \dfrac{16m^2n^2r^2}{[(n-m)(r^2+mn)]^2} \le \dfrac{16m^2n^2r^2}{[(n-m)(2r\sqrt{mn})]^2} = \dfrac{4mn}{n-m}$\\\\ Therefore, $f(m,49)=\dfrac{196m}{49-m}$.\\\\ Therefore, all possible values of $m$ are 48, 47, 42, 35, and the answer is 48+47+42+35=172.\\\\ What's the problem with this solution?\\ When AM-GM was used, $r=\sqrt{mn}$ is when "=" is achieved. However, in this case, $PA\parallel{PB}$, so contradiction.

If the phrase "maximum value" in the original problem is changed to "least upper bound of", then the problem should have the solution above.