2021 Fall AMC 12A Problems/Problem 15

Revision as of 20:39, 23 November 2021 by Kingofpineapplz (talk | contribs) (Created page with "==Problem 15== Recall that the conjugate of the complex number <math>w = a + bi</math>, where <math>a</math> and <math>b</math> are real numbers and <math>i = \sqrt{-1}</math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 15

Recall that the conjugate of the complex number $w = a + bi$, where $a$ and $b$ are real numbers and $i = \sqrt{-1}$, is the complex number $\overline{w} = a - bi$. For any complex number $z$, let $f(z) = 4i\hspace{1pt}\overline{z}$. The polynomial \[P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1\] has four complex roots: $z_1$, $z_2$, $z_3$, and $z_4$. Let \[Q(z) = z^4 + Az^3 + Bz^2 + Cz + D\] be the polynomial whose roots are $f(z_1)$, $f(z_2)$, $f(z_3)$, and $f(z_4)$, where the coefficients $A,$ $B,$ $C,$ and $D$ are complex numbers. What is $B + D?$

$(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304$

Solution

By Vieta's formulas, $z_1z_2+z_1z_3+\dots+z_3z_4=3$, and $B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).$


Since $\overline{a}\overline{b}=\overline{ab},$ \[B=(4i)^2\left(\overline{z_1z_2}+\overline{z_1z_3}+\overline{z_1z_4}+\overline{z_2z_3}+\overline{z_2z_4}+\overline{z_3z_4}\right).\] Since $\overline{a}+\overline{b}=\overline{a+b},$ \[B=(4i)^2\overline{\left(z_1z_2+z_1z_3+\dots+z_3z_4\right)}=-16\overline{(3)}=-48\]

Also, $z_1z_2z_3z_4=1,$ and \[D=(4i)^4\left(\overline{z}_1\,\overline{z}_2\,\overline{z}_3\,\overline{z}_4\right)=256\overline{\left(z_1z_2z_3z_4\right)}=256\overline{(1)}=256.\]

Our answer is $B+D=256-48=\boxed{(\textbf{D}) \: 208}.$


~kingofpineapplz