2005 AIME II Problems/Problem 12
Problem
Square has center and are on with and between and and Given that where and are positive integers and is not divisible by the square of any prime, find
Solution
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Draw the perpendicular from , with the intersection at . Denote and , and (since and ). The tangent of , and of .
By the tangent addition rule , we see that . Since , . We know that , so we can substitute this to find that .
A second equation can be set up using . To solve for , . This is a quadratic with roots . Since , use the smaller root, .
Now, . The answer is .
See also
2005 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |