2007 AMC 12A Problems/Problem 13
Contents
Problem
A piece of cheese is located at in a coordinate plane. A mouse is at and is running up the line . At the point the mouse starts getting farther from the cheese rather than closer to it. What is ?
Solution
We are trying to find the point where distance between the mouse and is minimized. This point is where the line that passes through and is perpendicular to intersects . By basic knowledge of perpendicular lines, this line is . This line intersects at . So . - MegaLucario1001
Solution 2
If the mouse is at , then the square of the distance from the mouse to the cheese is$\[ (x - 12)^2 + (8 - 5x)^2 = 26(x^2 - 4x + 8) = 26((x - 2)^2 + 4). \]$ (Error compiling LaTeX. Unknown error_msg)The value of this expression is smallest when , so the mouse is closest to the cheese at the point , and . -Paixiao
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.