2021 AMC 12B Problems/Problem 19

Revision as of 19:33, 11 February 2021 by Os31415 (talk | contribs)

Solution

Suppose the dice have $a$ and $b$ faces, and WLOG $a\geq{b}$. Since each die has at least $6$ faces, there will always be $6$ ways to sum to $7$. As a result, there must be $\tfrac{4}{3}\cdot6=8$ ways to sum to $10$. There are at most nine distinct ways to get a sum of $10$, which are possible whenever $a,b\geq{9}$. To achieve exactly eight ways, $b$ must have $8$ faces, and $a\geq9$. Let $n$ be the number of ways to obtain a sum of $12$, then $\tfrac{n}{8a}=\tfrac{1}{12}\implies n=\tfrac{2}{3}a$. Since $b=8$, $n\leq8\implies a\leq{12}$. In addition to $3\mid{a}$, we only have to test $a=9,12$, of which both work. Taking the smaller one, our answer becomes $a+b=9+8=\boxed{\textbf{(B)17}}$.