2021 AMC 12A Problems/Problem 21

Revision as of 14:07, 11 February 2021 by Sugar rush (talk | contribs) (closed parentheses at the end and added 0)

Problem

The five solutions to the equation \[(z-1)(z^{2}+2z+4)(z^{2}+4z+6)=0\] may be written in the form $x_{k}+y_{k}i$ for $1\leq k\leq 5$, where $x_{k}$ and $y_{k}$ are real. Let $\mathbb{E}$ be the unique ellipse that passes through the points $(x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}), (x_{4}, y_{4}),$ and $(x_{5}, y_{5})$. The excentricity of $\mathbb{E}$ can be written in the form $\frac{m}{\sqrt{n}}$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$?

$\textbf{(A) } 7\qquad\textbf{(B) } 9\qquad\textbf{(C) } 11\qquad\textbf{(D) } 13\qquad\textbf{(E) } 15\qquad$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png