2021 AMC 12B Problems/Problem 17
Problem 17
Let be an isoceles trapezoid having parallel bases and with Line segments from a point inside to the vertices divide the trapezoid into four triangles whose areas are and starting with the triangle with base and moving clockwise as shown in the diagram below. What is the ratio
Solution
Without loss let have vertices , , , and , with and . Also denote by the point in the interior of .
Let and be the feet of the perpendiculars from to and , respectively. Observe that and . Now using the formula for the area of a trapezoid yields \[ 14 = \frac12\cdot XY\cdot (AB+CD) = \frac12\left(\frac 8r + \frac 4s\right)(r+s) = 6 + 4\cdot\frac rs + 2\cdot\frac sr. \]Thus, the ratio satisfies ; solving yields .