1964 AHSME Problems/Problem 37

Revision as of 22:19, 24 July 2019 by Talkinaway (talk | contribs)

Problem

Given two positive number $a$, $b$ such that $a<b$. Let A.M. be their arithmetic mean and let G.M. be their positive geometric mean. Then A.M. minus G.M. is always less than:

$\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad\textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad\textbf{(C) }\dfrac{(b-a)^2}{ab}$

$\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}$

Solution

See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 36
Followed by
Problem 38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png