2020 INMO Problems/Problem 4
Problem
Let be an integer and let be real numbers such that . Prove that
Solution(1)
For , we want to show that where and . This is equivalent to showing that , which is true.
Suppose, now, that the given inequality is true for , where . Now, consider reals with sum . Then, and , so by induction hypothesis,
This means or as desired. ~biomathematics
Solution(2)
[/b]
Define,. ,
In general ,.
.
[b][/b]
.
[b] Proof [/b]
Using Tchevbycev inequality we have , .
.
.
.[Applying Induction on successive ].
.
.
.
.[using GM-AM]
.
[hide="Since"], and , Hence , [/hide]
[b][/b] .
[b] Proof [/b]
The RHS inequality is trivial by AM-GM inequality.
For LHS inequality I would like to use induction.
.
We have , and .
. Suppose , the statement is true for such that , and .
Now , consider .
Suppose , is median of the sequence, and and .
and .
Our induction step is complete.
This two claim leads and equality for .