2020 IMO Problems/Problem 1

Revision as of 00:55, 23 September 2020 by Epicnumbertheory (talk | contribs) (Created page with "Problem 1. Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hold: ∠P AD : ∠P BA : ∠DP A = 1 : 2 : 3 = ∠CB...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1. Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hold: ∠P AD : ∠P BA : ∠DP A = 1 : 2 : 3 = ∠CBP : ∠BAP : ∠BP C. Prove that the following three lines meet in a point: the internal bisectors of angles ∠ADP and ∠P CB and the perpendicular bisector of segment AB.