1956 AHSME Problems/Problem 49
Solution 1
First, from triangle , . Note that bisects (to see this, draw radii from to and creating two congruent right triangles), so . Similarly, .
Also, , and . Hence, \begin{align*} \angle AOB &= 180^\circ - \angle BAO - \angle ABO \\ &= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \\ &= 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} \\ &= \frac{\angle BAP + \angle ABP}{2}. \end{align*}
Finally, from triangle , , so