1993 IMO Problems/Problem 5

Revision as of 02:07, 5 July 2020 by Ftheftics (talk | contribs) (Created page with "==Problem== ==Solution== This is very beautiful problem. I should start with some observation, <math>f(f(1))=f(1)+1=3=f(2)</math>. <math>f(f(2))=f(2)+2=5=f(3)</math>. [c...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Solution

This is very beautiful problem.

I should start with some observation,

$f(f(1))=f(1)+1=3=f(2)$.

$f(f(2))=f(2)+2=5=f(3)$.

[color=#f00][u]Claim(1):[/u][/color] $f(f_N)=f_{N+1}$.Here $f_n$ is $n$ th febonacchi number.

[i]Proof.[/i] we have seen this is true for $N=1,2$ assuming its true for $N=k$ we can conclude,

\[f(f_{k+1})=f(f(f_k))=f(f_k)+f_k=f_{k+1}+f_k= f_{k+2}\].

it is very well know that $\lim_{n\to\infty} \frac{f_{n+1}}{f_n} = \phi (\textcolor{blue}{\text{Golden ratio}})$.

so we can see that for large $N$ , $f(N)\sim [\phi .N]$.

To see why the above observation is true we have to look the given condition we have \[2=f(1)<f(2)<f(3)=5<f(4)<f(5)=8\]

now clearly $f(4)$ can be either $6$ or $7$.here $[\phi .4]= 6$ so difference is not large .

From here we can guess $f(n)=[\phi.n+k]$ can be a possible solution. where $0<k<1$.



\begin{tabular}{lllll} \hline \multicolumn{1}{|l|}{{\color{blue} n}} & \multicolumn{1}{l|}{1} & \multicolumn{1}{l|}{2} & \multicolumn{1}{l|}{3} & \multicolumn{1}{l|}{4} \\ \hline \multicolumn{1}{|l|}{{\color{blue} $[\phi.n]$}} & \multicolumn{1}{l|}{1} & \multicolumn{1}{l|}{3} & \multicolumn{1}{l|}{4} & \multicolumn{1}{l|}{6} \\ \hline \multicolumn{1}{|l|}{{\color{blue} f(n)}} & \multicolumn{1}{l|}{2} & \multicolumn{1}{l|}{3} & \multicolumn{1}{l|}{5} & \multicolumn{1}{l|}{6,7} \\ \hline

                                                       &                        &                        &                        &                         

\end{tabular} If we put $k=0.4$ on that we must get value of $[\phi.n+0.4]=2=f(1)$ and it will same for $f(3)$ as well.

Now look into the following table,

\begin{tabular}{lllll} \hline \multicolumn{1}{|l|}{{\color{blue} n}} & \multicolumn{1}{l|}{1} & \multicolumn{1}{l|}{2} & \multicolumn{1}{l|}{3} & \multicolumn{1}{l|}{4} \\ \hline \multicolumn{1}{|l|}{{\color{blue} $[\phi.n+0.4]$}} & \multicolumn{1}{l|}{2} & \multicolumn{1}{l|}{3} & \multicolumn{1}{l|}{5} & \multicolumn{1}{l|}{6} \\ \hline \multicolumn{1}{|l|}{{\color{blue} f(n)}} & \multicolumn{1}{l|}{2} & \multicolumn{1}{l|}{3} & \multicolumn{1}{l|}{5} & \multicolumn{1}{l|}{6or7} \\ \hline

                                                                           &                        &                        &                        &                         

\end{tabular}

From here I should my final claim which finish this problem.

[color=#960000][b][u]Claim(2):[/u][/b][/color] $f(n)=[\phi.n +0.4]$ works.

[color=#000][i][b]proof.[/b][/i][/color] At first of all notice that $[\phi.(n+1)+0.4]\ge [\phi.n+0.4]+[\phi]>[\phi.n +0.4]$.

Now assume that $g:\mathbb{N}\to \mathbb{N}$ such that $g(n)=[\phi.n +0.4]$. we hane $g(n+1)>g(n)$. Now, \[g(g(n))=[\phi.g(n) +0.4] =[\phi.([\phi.n +0.4]) +0.4]\]

\[<[\phi.[(\phi.n +0.4) +0.4] =\phi ^2 .n +0.4+0.4\times \phi\]

\[= [\phi .n +n+0.4+0.4\times \phi]  (\text{this is because of} \phi ^2 -\phi -1=0)\]

\[\le [\phi .n +0.4]+[n+1+0.4\times \phi ] (\text{I used this fact} [x+y]\le [x]+[y+1])\]

\[= g(n)+n+1 (\text{here } 0.4\times \phi \sim 0.64 )\]




Now it is time to find out lower bound.

\[g(g(n)) >  [\phi.(\phi.n +0.4-1) +0.4]\]

\[=[\phi^2.n +0.4 -0.6\times \phi]\]

\[=[\phi .n +n+0.4-\phi \times 0.6]\]

\[\ge [\phi .n +0.4]+[n-\phi \times 0.6]\]

\[=g(n)+n-1\]

So only possibility is $g(g(n))=g(n)$.

Again notice that $g(1)=2$.

So ,$g(n)=f(n)$ can be a solution to $f$.

So, Yes there exists a function as defined in the question.