2020 USOJMO Problems/Problem 3

Revision as of 17:14, 23 June 2020 by Lcz (talk | contribs) (Problem)

Problem

An empty $2020 \times 2020 \times 2020$ cube is given, and a $2020 \times 2020$ grid of square unit cells is drawn on each of its six faces. A [i]beam[/i] is a $1 \times 1 \times 2020$ rectangular prism. Several beams are placed inside the cube subject to the following conditions:

- The two $1 \times 1$ faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are $3 \cdot {2020}^2$ possible positions for a beam.) - No two beams have intersecting interiors. - The interiors of each of the four $1 \times 2020$ faces of each beam touch either a face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?