1954 AHSME Problems/Problem 31

Revision as of 00:51, 28 February 2020 by Rayfish (talk | contribs)

Problem

In $\triangle ABC$, $AB=AC$, $\angle A=40^\circ$. Point $O$ is within the triangle with $\angle OBC \cong \angle OCA$. The number of degrees in $\angle BOC$ is:

$\textbf{(A)}\ 110^{\circ} \qquad \textbf{(B)}\ 35^{\circ} \qquad \textbf{(C)}\ 140^{\circ} \qquad \textbf{(D)}\ 55^{\circ} \qquad \textbf{(E)}\ 70^{\circ}$

Solution

Since $\triangle ABC$ is an isosceles triangle, $\angle ABC = \angle ACB = 70\degree$ (Error compiling LaTeX. Unknown error_msg). Let $\angle OBC = \angle OCA = x$. Since $\angle ACB = 70$, $\angle OCB = 70 - x$. The angle of $\triangle OBC$ add up to $180$, so $\angle BOC = 180 - (x + 70 - x) = \boxed{\textbf{(A) } 110\degree$ (Error compiling LaTeX. Unknown error_msg).

See Also

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 30
Followed by
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png