2016 AMC 10A Problems/Problem 5

Revision as of 07:40, 17 February 2016 by Techguy2 (talk | contribs) (Solution)

Problem

A rectangular box has integer side lengths in the ratio $1: 3: 4$. Which of the following could be the volume of the box?

$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 144$

Solution

Let the smallest side length be $x$. Then the volume is $x \cdot 3x \cdot 4x =12x^3$.If $x=2$, then $12x^3 = 96 \implies \boxed{\textbf{(D) } 96.}$

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png