2011 AMC 10B Problems/Problem 16

Revision as of 04:59, 6 April 2019 by Henry2004 (talk | contribs) (Solution)

Problem

A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?

[asy] unitsize(10mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2));  draw(A--B--C--D--E--F--G--H--cycle); draw(A--D); draw(B--G); draw(C--F); draw(E--H);  [/asy]

$\textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png