2019 AIME I Problems/Problem 8
The 2019 AIME I takes place on March 13, 2019.
Problem 8
Solution(BASH)
Remember . This means . Let us look at $sin^8(x)+cos^8(x)=(sin^2(x)+cos^2(x))sin^{8}(x)+(sin^2(x)+cos^2(x))cos^{8})(x)=sin^{10}(x)+cos^{10})(x)
==Solution 2 (Another BASH)== First, for simplicity, let$ (Error compiling LaTeX. Unknown error_msg)a=\sin{x}b=\cos{x}a^2+b^2=1a^{10}+b^{10}+5a^2b^2(a^6+b^6)+10a^4b^4(a^2+b^2)=\frac{11}{36}+5a^2b^2(a^6+b^6)+10a^4b^4=1\frac{11}/{36}=a^{10}+b^{10}=(a^{10}+b^{10})(a^2+b^2)=a^{12}+b^{12}+a^2b^2(a^8+b^8)a^2b^2(a^8+b^8)y=a^2b^2a^2+b^2=1a^6+b^6+3a^2b^2(a^2+b^2)=1a^6+b^6=1-3y\frac{11}{36}+5a^2b^2(a^6+b^6)+10a^4b^4=1a^2b^2(a^6+b^6)+2a^4b^4=\frac{5}{36}y(1-3y)+2y^2=y-y^2=\frac{5}{36}y=1y=\frac{1}{6}y=1y=\frac{1}{6}a^4+b^4=(a^2+b^2)-2a^2b^2=\frac{2}{3}a^8+b^8=(a^4+b^4)^2-2a^4b^4=\frac{4}{9}-\frac{1}{18}=\frac{7}{18}a^{12}+b^{12}=\frac{11}{36}-\frac{7}{18}*\frac{1}{6}=\frac{13}{54}\boxed{067}$.
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.