Mock AIME 1 2006-2007 Problems/Problem 6
Problem
Let and be two parabolas in the Cartesian plane. Let be the common tangent line of and that has a rational slope. If is written in the form for positive integers where , find .
Solution
From the condition that is tangent to we have that the system of equations and has exactly one solution, so has exactly one solution. A quadratic equation with only one solution must have discriminant equal to zero, so we must have or equivalently . Applying the same process to , we have that has a unique root so or equivalently . We multiply the first of these equations through by and the second through by and subtract in order to elliminate :
. We know that the slope of , , is a rational number, so we divide this equation through by and let to get .
This problem needs a solution. If you have a solution for it, please help us out by adding it.