2019 AMC 12A Problems/Problem 22

Revision as of 15:45, 9 February 2019 by P groudon (talk | contribs) (Created page with "==Problem== Circles <math>\omega</math> and <math>\gamma</math>, both centered at <math>O</math>, have radii <math>20</math> and <math>17</math>, respectively. Equilateral tr...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Circles $\omega$ and $\gamma$, both centered at $O$, have radii $20$ and $17$, respectively. Equilateral triangle $ABC$, whose interior lies in the interior of $\omega$ but in the exterior of $\gamma$, has vertex $A$ on $\omega$, and the line containing side $\overline{BC}$ is tangent to $\gamma$. Segments $\overline{AO}$ and $\overline{BC}$ intersect at $P$, and $\dfrac{BP}{CP} = 3$. Then $AB$ can be written in the form $\dfrac{m}{\sqrt{n}} - \dfrac{p}{\sqrt{q}}$ for positive integers $m$, $n$, $p$, $q$ with $\gcd(m,n) = \gcd(p,q) = 1$. What is $m+n+p+q$? $\phantom{}$

$\textbf{(A) } 42 \qquad \textbf{(B) }86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 114 \qquad \textbf{(E) } 130$

Solution

See Also

2019 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png