2018 AIME I Problems/Problem 15
Problem 15
David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, , which can each be inscribed in a circle with radius
. Let
denote the measure of the acute angle made by the diagonals of quadrilateral
, and define
and
similarly. Suppose that
,
, and
. All three quadrilaterals have the same area
, which can be written in the form
, where
and
are relatively prime positive integers. Find
.
Solution
Suppose our four sides lengths cut out arc lengths of ,
,
, and
, where
. Then, we only have to consider which arc is opposite
. These are our three cases, so
Our first case involves quadrilateral
with
,
,
, and
.
Then, by Law of Sines, and
. Therefore,
so our answer is
.
By S.B. LaTeX by willwin4sure