1974 IMO Problems/Problem 6
Problem
Let be a non-constant polynomial with integer coefficients. If
is the number of distinct integers
such that
prove that
where
denotes the degree of the polynomial
Solution
Lemma: Let be a polynomial with integer coefficients which is not constant. Then if
obtains
(or
) as its values for at least four times then
( or
) for all
.
Proof. Assume that
for
distince. Then if there's
which
then
so
where
is a polynomial with the integer coefficients! So
which is impossible cause
can not presents as product of more than three distince numbers! This proved the lemma!
Back to our problem: For convinet put and
. Firstly if
then
. Assume
. If equation
with more than three integer points (ie.. at least
) then equation
implies
so
, ie...
. The same case for equation
. So
. If
then
. Now assume that
. In this case if
then
.
So let us show that . In fact if
then
has three integers distince roots, and the same for
. So
and
where
distince and
distince and all with
are integers! Then
for all
. So
.
Finally, we have
for
and because that
can not presents as products of three distince numbers so
, we may assume
. Because
so
This means
. So we must have
which follows
, which contracts!. So
and we're done.
The above solution was posted and copyrighted by pluricomplex. The original thread for this problem can be found here: [1]
See Also
1974 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
All IMO Problems and Solutions |