2018 AMC 12B Problems/Problem 7

Revision as of 19:42, 16 February 2018 by Anellipticcurveoverq (talk | contribs) (Undo revision 91707 by Kyriegon (talk))

Problem

What is the value of

\[\log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27?\] $\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10$

Solution 1

Change of base makes this $\frac{\prod_{i=3}^{13} \log (2i+1)}{\prod_{i=1}^{11}\log (2i+1)} = \frac{\log 25 \log 27}{\log 3 \log 5} = \log_327\cdot \log_525 = \boxed{6}$ (mathguy623)

Solution 2

Using the chain rule for logarithms ($\log _{a} b \cdot \log _{b} c = \log _{a} c$), we get $\log _{3} 7 \cdot \log _{5} 9 \cdot \cdot \cdot \log_{23} 27 = (\log _{3} 7 \cdot \log _{7} 11 \cdot \cdot \cdot \log _{23} 27) \cdot (\log _{5} 9 \cdot \log _{9} 13 \cdot \cdot \cdot \log _{21} 25) = \log _{3} 27 \cdot \log _{5} 25 = 3 \cdot 2 = 6$.

Solution 3

When the entire product is rewritten using change of base, the fractions telescope down to $\frac{\log 25 \log 27}{\log 3 \log 5} = \log_327\cdot \log_525 = \boxed{6}$

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png