2018 AMC 10B Problems/Problem 24

Revision as of 15:09, 16 February 2018 by Giraffefun (talk | contribs)

Problem

Let ABCDEFG be a regular hexagon with side length 1. Denote X, Y, and Z the midpoints of sides (segment) AB, (segment) CD, and (segment) EF, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of (insert) triangle symbol) ACE and (insert triangle symbol) XYZ?

$\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad$


Answer: 15sqrt(3)/32