2018 AMC 10A Problems/Problem 14

Revision as of 17:20, 8 February 2018 by Nivek (talk | contribs) (Solution)

What is the greatest integer less than or equal to \[\frac{3^{100}+2^{100}}{3^{96}+2^{96}}?\]

$\textbf{(A) }80\qquad \textbf{(B) }81 \qquad \textbf{(C) }96 \qquad \textbf{(D) }97 \qquad \textbf{(E) }625\qquad$

Solution

Let's set this value equal to $x$. We can write \[\frac{3^{100}+2^{100}}{3^{96}+2^{96}}=x.\] Multiplying by $3^{96}+2^{96}$ on both sides, we get \[3^{100}+2^{100}=x(3^{96}+2^{96}).\] Now let's take a look at the answer choices. We notice that $81$, choice $B$, can be written as $3^4$. Plugging this into out equation above, we get \[3^{100}+2^{100} \stackrel{?}{=} 3^4(3^{96}+2^{96}) \Rightarrow 3^{100}+2^{100} \stackrel{?}{=} 3^{100}+3^4*2^{96}.\] The right side is larger than the left side because \[2^{100} \leq 2^{96}*3^4.\] This means that our original value, $x$, must be less than $81$. The only answer that is less than $81$ is $80$ so our answer is $\boxed{A}$.

~Nivek

Solution 2

Let $x=3^{96}$ and $y=2^{96}$. Then our fraction can be written as $\frac{81x+16y}{x+y}=\frac{16x+16y}{x+y}+\frac{65x}{x+y}=16+\frac{65x}{x+y}$. Notice that $\frac{65x}{x+y}<\frac{65x}{x}=65$. So , $16+\frac{65x}{x+y}<16+65=81$. And our only answer choice less than 81 is $\boxed{(A)}$

~RegularHexagon

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions